
- • • •

Copy No. /Lot. ^ -Qfc
ESD-TR-77-127 MTR-3365

SPECIAL - PURPOSE PROCESSORS

FOR SURVEILLANCE RADAR APPLICATIONS

MAY 1977

Prepared for

DEPUTY FOR DEVELOPMENT PLANS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
Hanscom Air Force Base, Bedford, Massachusetts

Approved for public release;
distribution unlimited.

Project No. 7010
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract No. F19628-76-C-0001

(\&WKrt<}<d

When US. Government drawings, specifications,

or other data are used for any purpose other

than a definitely related government procurement

operation, the government thereby incurs no

responsibility nor any obligation whatsoever; and

the fact that the government may have formu

lated, furnished, or in any way supplied the said

drawings, specifications, or other data is not to be

regarded by implication or otherwise, as in any

manner licensing the holder or any other person

or corporation, or conveying any rights or per-

mission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

{\y£lOC&-YY^ WJ,
WILLIAM W. SELAH, 2dLt, USAF
Project Officer
Technological Planning
Deputy for Development Plans

B.^TINDALL, Lt Colonel, USAF
Erector, Technological Planning

deputy for Development Plans

V<f/7tf -7*fo^*- ^\4.tf.

HUGH M. MILLER, Colonel, USAF
Assistant Deputy for Development Plans

IMCLASSIE1ED
SECURITY CLASS'FICATION OF THIS »AGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMDER B GOVT ACCESSION NO.

ESD-TR-77-127

3. PECI^TNT"; CATALOG NUMBER

4. TITLE (and Subtitle)

SPECIAL—PURPOSE PROCESSORS
FOR SURVEILLANCE RADAR APPLICATIONS

5. TYFE OF REPORT ft PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

MTR-3365
7. AUTHORfs)

R.W. Jacobus
V. Kross

8. CONTRACT OR GRANT NUM9ERf«J

F19628-76-C-0001

9. PERFORMING ORGANIZATION NAME AND AODRESS

The MITRE Corporation
P.O. Box 208
Bedford, MA 01730

10 FPOGPAM ELEMENT. PROJECT, TASK
:": A Wr RK <JNIT NUMBERS

Project No. 7010
11. CONTROLLING OFFICE NAME AND ADDRESS

Deputy for Development Plans
Electronic Systems Division, AFSC
Hanscom Air Force Base, Bedford, MA 01731

12. REPORT DATE

MAY 1977
13. NUMBER OF PAGES

82
14. MONITORING AGENCY NAME ft ADDRESSfif different from Controlling Office) 15. SECURITY CLASS, (of this report)

UNCLASSIFIED
15a. DECLASSIFI CATION/DOWN GRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. it different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide it necessary and identity by block number)

COORDINATE TRANSFORMATION SPECIAL-PURPOSE
LOW COST PROCESSOR
MICROPROCESSOR TRACKING
SATELLITE PROCESSOR

20. ABSTRACT (Continue on reverse side If necessary and Identify by block number)

Many track-while-scan surveillance systems utilize a large central computer to
correlate the incoming sensor data with established tracks on targets of interest.
These correlations must be done in near-real time at a high data rate and often
consume a substantial fraction of the computer's CPU capacity; as a consequence,
both the computer hardware and its software are expensive. Using the Joint

(over)

DD | JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE flWien Data Entered)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEflfhMl Dmtm Entered)

20. Abstract (concluded)

Surveillance System (JSS), a radar network for continental air defense as a specific
example, a special-purpose processor is described. It can be connected as a
"satellite" to virtually any computer and can relieve the computer of the
coordinate-conversion and track-correlation burden. The impact of the processor
on reducing the hardware and software costs of the overall system is discussed. .

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEfWTian Data Entered)

ACKNOWLEDGMENT

This report has been prepared by The MITRE Corporation under

Project No. 7010. The contract is sponsored by the Electronic Systems

Division, Air Force Systems Command, Hanscom Air Force Base,

Massachusetts.

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

LIST OF TABLES

SECTION I

SECTION II

SECTION III

SECTION IV

SECTION V

SECTION VI

APPENDIX A

APPENDIX B

INTRODUCTION

THE JOINT SURVEILLANCE SYSTEM (JSS)

THE "BASELINE" SATELLITE PROCESSOR

OTHER SATELLITE PROCESSOR OPTIONS

COST IMPACT ON THE JSS SYSTEM

CONCLUSIONS

ESTIMATES OF MICROPROCESSOR PROGRAM
SIZE AND TIMING

PROGRAMMING CONSIDERATIONS

LIST OF REFERENCES

Page

4

'4

5

9

19

48

54

64

66

72

81

LIST OF ILLUSTRATIONS

Figure Page

2-1 Examples of JSS Coverage Region 10
2-2 One Configuration for Overall JSS

Data Processing System 12
2-3 Organization of Radar Data Into Frames 17
3-1 Basic Computer/Satellite Configuration 22
3-2 Computational Arrangement for Baseline

Satellite Processor 29
3-3 Timing of Tasks Within Data Frame 33
3-4 Block Diagram of Satellite Processor 35
3-5 Control Lines for Satellite Processor 36
3-6 Photograph of Simulated Processor 43
5-1 Suggested JSS Configuration Using

Satellite Processor 56
B-l Counter "A"/"B" Selection 76
B-2 Flow Diagram for Coordinate Conversion

and Track Correlation 77
B-3 Flow Diagram for DMA Procedure 80

LIST OF TABLES

Table Number Page

3-1 "Baseline" Satellite Processor Requirements 21
3-2 Cost Estimates for Integrated-Circuit

Components 41
A-l Coordinate Transformation Program 70
A-2 Sub-Program for Coarse Track-Correlation 71
B-l Register Identification 73

SECTION I

INTRODUCTION

The high cost of military electronics has focussed attention at

all levels on the possibility of using technology to lower the life-

cycle costs of systems. The problems are enormously complicated by

the multitude of interactions and interfaces that must be accommodated,

by built-in costs that cannot be altered appreciably, and by the lack

of confidence in new approaches to the design and procurement of equip-

ment. A particularly severe problem is found in computer-related sub-

systems; the present costs of both computer equipment and computer

software are much too high. Software is assuming an increasingly

larger portion of the computer system costs, despite such innovations

as "structured programming" and other similar means to discipline the

design and debugging process. The recent availability of low-cost

mini-computers and micro-computers has raised the hope of decentralized

computational facilities, and a corresponding lowering of the overall

cost of the computer system components of large military systems.

Another very promising approach to lowering the cost of computation

is the special-purpose "satellite" processor. It is not a solution to

all computer problems, but it does apply to the requirements of many

systems, and should be considered seriously during the conceptual design

phase.

The satellite processor is defined here as a device that can be

attached to a general-purpose digital computer, using one or more of

5

the standard input/output peripheral channels of the computer. The

satellite is designed to perform some well-defined portion of the

system's computational load. It can utilize hard-wired digital

equipment for the execution of fixed algorithms, and it can

contain general-purpose computer elements (e.g., micro-processors)

as well. Ordinarily it is not in series with the data stream, as

might be the case with some hard—wired processors, but rather sits

off to the side and manipulates data that have already been handled

by the computer.

The satellite's standard function is to process tables of data

stored in the computer's memory. The computer programmer arranges to

have the data available in a certain set of consecutive memory locations;

he "calls" the satellite, and at some later time he can find the processed

table occupying either the original locations or some other pre-arranged

addresses. With careful design of the satellite, it can be made very

simple for the programmer to use, and can present a minimum of interface

problems for the computer hardware designer. From the hardware point of

view, the processor should appear to the computer as a standard peripheral

device, such as an analog-to-digital converter or a magnetic disk memory;

usually it is connected to a direct-memory-access (DMA) channel to permit

the highest data-transfer rates. From the software programmer's point

of view, the satellite should be "set up" with a minimum number of

commands, should require no programmer attention or monitoring while

it is performing its tasks, and should present a minimum load on the

computer's normal functions; e.g., the satellite should not require a

maximum-rate data transfer of large blocks of data that would effectively

paralyze the computer's central processor for some period of time.

Satellite processors are not a new concept. Examples of commercially

available devices in this class are the Fast Fourier Transform processor

or other similar array processors, and units which rapidly compute

transcendental functions.

The satellite processor can represent a powerful tool in reducing

both the cost and the risk of digital computation in a system. In

many cases the use of one or more satellites can greatly change the

architecture of the overall system, and often can result in large

direct savings in conventional computer hardware.

Substantial software savings can often be obtained also, but they

are somewhat more indirect and are heavily dependent upon both the hardware

and software architecture utilized in the "conventional" approaches to

the system design. Without satellite processors, the programmer is

usually straining to make optimally efficient use of the computer's

capability—by careful management of timing, use of complicated interrupt

arrangements, overlaying of instructions and data, trading of memory

for computation time, and searching for the shortest algorithms consistent

with the desired accuracy. All of these activities make the programmer's

task much more difficult, increase his tendency to make errors, and

confuse the process of checking and debugging programs. By using satellite

processors, much of the computer's capacity is relieved, leaving the

programmer with a relatively luxurious margin, and thereby permitting

him to use "brute force" programming approaches that are easier to

understand and document, and easier to test and debug.

These satellites can be quite inexpensive with respect to design

costs, hardware implementation costs, and the indirect costs of pro-

grammer education. Since the satellite functions are generally well-

defined and repetitive, the devices are easy to test as isolated

units (i.e., not connected to the computer), and can be tested in a

straightforward manner by the programmer in the operational real-time

computer environment.

The comments made above about the relative virtues of satellite

processors are, to a large extent, opinions held by the authors and

their associates. To place these opinions in context, and to give

them some additional credibility, we have selected an example of a

satellite processor that performs track correlations and other tasks

in a track-while-scan radar system. To be specific, so that detailed

considerations can be examined, we have selected the Joint Surveillance

System (JSS) as the particular radar application for treatment here.

SECTION II

THE JOINT SURVEILLANCE SYSTEM (JSS)

The Joint Surveillance System (JSS) is a network of surveillance

radars located in the continental United States, Alaska, and Canada.

JSS is an air-sovereignty system intended to replace the existing SAGE

system, and will provide real-time information on all aircraft within

this large surveillance region. Data from groups of about 25 radar

sites are brought together at Regional Operations Control Centers

(ROCC's), each containing large-scale data-processing facilities and

provisions for approximately 30 operators' consoles.

Figure 2-1 shows a typical distribution of radars within control

of a single ROCC; the circles have a radius of about 200 miles, which

is representative of the surveillance range of the radars. Some of

the sites are capable of measuring target range and azimuth only, while

others have height-finders, and a few have modern "3-D" radars. In most

cases, height information on a target is available only when requested;

i.e., the ROCC must ask the radar to perform a height measurement on

a particular target. All sites can interrogate the IFF transponders

carried by friendly military and civilian aircraft. Data from the radars

are transmitted to the ROCC's in a wide variety of standard formats.

In all cases the basic radar information on aircraft targets is in

polar form (range, azimuth, and height) expressed in the local coordinates

of the surveillance site.

COVERAGE OF

200 NM

RADAR

2048 NM

1 1 •

•
• \

\ *

• • \
•

•

\ •

•

•
3 •
z
00
t
o
w

• 1 • \J

• /

•

•

s. •

v»

•

Figure 2-1 EXAMPLE OF JSS COVERAGE REGION

10

The data processor at a ROCC must perform many functions, among

which are the following: It must maintain two-way communications with

each of the 25 radar sites, and register all of the incoming target

measurements with respect to a common reference grid, after converting

from polar to rectangular coordinates. The processor must display all

of the registered data at operator consoles, allow the operators to

initiate tentative tracks, and then automatically track up to 200 targets.

When necessary, computations for guiding an interceptor aircraft to an

intersection with a given track must be performed. Track information

and other data must be sent to and received from other ROCC's, the

NORAD center, the Air Weather Service, and the FAA.

There are several reasonable options for the configuration of

computing equipment at a ROCC. The simplest from a conceptual stand-

point is a single large computer with sufficient speed and memory to

perform all of the required tasks. Another option is to sub-divide

the computational problem into several relatively independent tasks,

each performed by a separate computer, as shown in Figure 2-2. On the

basis of some informal studies conducted at MITRE, the multiple-computer

option (where each computer is in the "medium-scale" class) represents

a reasonable system architecture from the standpoint of hardware and

software costs; the various separate tasks are each within the capability

of medium-scale computers, the computational loads appear to be fairly

well balanced, and the interfaces among the computers are relatively

simple and straightforward. We cannot claim here that any multiple-

11

OT u
a -J
z O < OT

z
OT O
V o <
-i <r a o
!2$
O (E

111 o a.
to O

c) c) o c } (D

or K
in Ul
t- 1-

2 © I ®
X Z
o o
o o

» s o
_1

or
o o

S
S

IN
G

, M
A

P
P

IN

O
O

R
O

IN
A

T
E

D

R
EG

 1
S

T
R

A
T

I

O
OT OT
UJ

1-

1°

z
o

UJ
a
OT
t-

o

O
o
or
a
z
o

Ou.

11

R
O

C
E

N

G
.C

N

A
N

 1- <
_l

a:

I i-

CD
Q. - a. — o or 7 or UJ OT

OT
Z
o
i-

UJ OT OT O
O < OC O

O OT o OT O Q

< 2iu ui < Q
OT >
OT QZ

o < 8 o
Q

, -o UZOl or Z
z 2 <0 1- 7 <
3 UJ 5 z .

o o < — h- < _J K x
<r OT ir a §2

UJ o or UJ
I- • S u. Q 1- z
3
a.
2

< o Q UJ

O
o

CO

o

CO
CO
UJ
o
o
or
0-

<
<
Q

CO
CO
-3

<
or
u
>
o
or
o

<
or

o
o
UJ
z
o
CM

I
C\J

V
L.
3

12

computer configuration is an optimum one for the JSS problem, and

there is no reason to believe that the particular arrangement shown

in Figure 2-2 will actually be implemented for JSS.

The arrangement of Figure 2-2 results in a physical separation

of tasks, which has the advantage of simplifying our discussions in

Section V about the cost impact of a special-purpose satellite.

Therefore, for the remainder of this report we will use Figure 2-2

to represent the "before" configuration of a hypothetical version of

JSS.

As shown in the figure, five computers are tied together with a

bi-directional data bus (actually several independent busses). Two

of the computers, labelled A and B, operate more or less in parallel

to handle the high volume of raw data generated by the radars. Using

special-purpose multiplex interface units, they bring the asynchronous

radar data into temporary core storage. To limit the amount of data

for subsequent processing, they perform various mapping and masking

functions according to pre-set and/or operator-controlled thesholds

and priority decisions. Although as many as 8500 radar reports may

enter the ROCC in any six-second data frame, the result of the masking

and mapping is to place a firm upper bound of 3600 reports per frame

on the data passed on to the rest of the processing system. The two

input computers perform polar-to-rectangular coordinate conversions

on the data, and then provide "coarse" track correlation, as described

below.

13

The large geographical extent of the surveillance volume for a

ROCC places rather severe requirements on the accuracy of the coordinate

conversion, and considerable effort has been expended in the JSS project

to find a set of equations of minimum complexity which meet the require-

ments. If the raw data for a given radar report are represented as

R (slant range), 9 (azimuth), and H (height) then the following pair

of equations may be used to compute the X- and Y-coordinates of the

report:

X = K^ + K F sina + K, F2 sing

Vj « uuou T r\.Q Y = lLj + Kg F cosa H- K„ F cosf

where F = A2 - (H-K.,)2

a = 6 - K2

6 = 2a - K3

The nine constants K_ through Kq are functions of the particular

location of the radar site from which the report was obtained. Even

these relatively simple equations can place a large burden on the

computers, because two sines, two cosines, a square root, and at least

seven multiplications must be performed for each of the 3600 reports

in a data frame; special-purpose satellites which can rapidly compute

sines and square roots may be essential adjuncts to the computers.

14

The process of "tracking" requires that one of the computers

(labelled E in Figure 2-2) continuously updates a set of simple

smoothing equations for each target. The track parameters are updated

by comparing the predicted position of each target with the most recent

radar reports. When a particular radar report lies close to the

expected position of the target, the tracking algorithm assumes that

the report is "correlated" with the target track, and updates the track

parameters accordingly. Track correlation is thus a process of comparing

the radar reports with the track predictions, and making decisions on

the basis of the relative distances between them.

As mentioned earlier, the JSS must have the computational capacity

to track up to 200 targets. If the computer were to use the simplest

approach to correlation, it would have to test each of the 200 tracks

against every one of the 3600 radar reports during any six-second

data frame, or the equivalent of one correlation test every eight

microseconds. Since this would clearly consume most of the CPU

capacity of a typical computer, it is necessary for the JSS programmer

to employ a variety of tricks or stratagems to avoid the brute-force

testing of 3600 reports against 200 tracks. A part of the time-saving

strategy is to first perform "coarse correlation" on the data, based

on the notion that most of the 3600 reports are actually false alarms

not correlated with any tracks; if the computer can recognize or tag

those relatively few reports which are roughly correlated with the

tracks, then the remaining reports can be ignored by the tracker.

15

Thus, using several types of sorting strategies which are not of

direct interest here, the JSS programmer manages to make the following

coarse test on each of the 3600 radar reports: Does the report lie

within (say) 12 miles of the expected position of any track? We shall

call this particular test the coarse track-correlation. Only those

reports yielding an affirmative answer are passed on to the precision

tracker which makes the final fine-grain correlations. In the ROCC

configuration shown in Figure 2-2, input computers A and B perform

the function of coarse track-correlation, while computer E performs

final correlation and other related operations.

To complete this brief description and definition of the JSS

computational requirements (emphasizing the data manipulations near

the input portion of the ROCC), we must be more specific about the

timing constraints in the system. The computations are organized into

data frames which are six seconds in length, as shown in Figure 2-3.

Radar reports enter continuously and asynchronously throughout each

frame. Because of the smoothing and extrapolation methods chosen for

the JSS tracking algorithm, the best and most recent estimates of

track position are not available until the center of each frame, i.e.,

three seconds into the frame. Thus we cannot begin to correlate radar

reports with the track data until half the frame is over. Furthermore,

the tracking algorithms demand that all the coarse track-correlations

be completed within 0.5 second after the end of the frame. At most,

we have 3.5 seconds to perform coarse track-correlation—three seconds

at the end of a given frame, and a half-second into the next frame.

16

.
$
p

1=
• •

K
j=

IO

« O — 2* * 2 * — Si«
Si
I

= <=> ii-
< u. <"• *-2 O ^^ 1 CM

^SlS"
t. —

<=• BXfX «

— ' *"*** o2o:
oi-p

^ C

K
^

oj

£ ~ «S CM N puj

111
2 2> • <

<=•

TR
A

C
K
 C

M
FO

R
 F

R
A

*
1

 T
=

9

g a *
2

v. — <=^

R
R

E
L

A
T

E

A
C

K
 D

A
TA

I

F
R

A
M

E

T
H

S
.3

r ~ oar";
o»- 0

E 1L

K
~

O u. = 2%
* «* ~

S <
a.
b.

25 - — <=^ OU. •"

o u.

s

>.• <

<
or

2
or
<
Q
<
or
u.
o

o

M

<
o
or
o

CVJ

17

A very large portion of the computations performed at the input

to the ROCC, in computers labelled A and B, consists of coordinate

conversion and coarse track-correlation. If some means could be

found to relieve these burdens, we might expect significant savings

in computer hardware and a simplification of the remaining computer

program. As discussed in the next section, a small special-purpose

satellite processor can perform both functions at very low cost.

Additional functions could be accommodated by a more elaborate

version of the satellite processor. Various options will be described

in Section IV of this report. It should be noted that the cost-impact

discussion in Section V will refer primarily to an "advanced" satellite

processor which includes the mapping and masking options.

18

SECTION III

THE "BASELINE" SATELLITE PROCESSOR

Although there are many portions of the JSS problem that may offer

attractive possibilities for cost reduction through the use of special-

purpose satellite processors (e.g., in the generation of displays),

this report will confine its attention to the front end of the ROCC

computational burden, where the data from the surveillance radars are

arriving at a high rate.

Since we intend to examine the cost benefits of satellite processors

in a later section, we have too many design options at this point in our

discussion. First, we have choices concerning the processing functions

to be performed: Should the satellite perform mapping and masking as

well as track correlation? Is it advisable to have the central computer

worry about coordinate conversions? Could the satellite take over the

entire tracking function, rather than just the coarse track-correlation?

Second, we must decide on the burden to be placed on the JSS software

programmer: To what extent should we expect the programmer to allocate

core-memory space, do bookkeeping on data manipulated by the satellite,

or concern himself with data transfers to and from the satellite? Third,

we must use judgment in allocating hardware burdens to the satellite:

How much internal memory should the satellite have? Is the satellite

to be a fixed machine, or should it be programmable through the central

computer? What provisions should we make here for input/output control?

19

What we shall do is define a "baseline" satellite processor,

carry out a relatively detailed design for the baseline, and make

cost estimates for the baseline. Then, in a later section of the

report, we shall consider in less detail some of the more important

design options.

The definition or list of requirements for our baseline satellite

processor is presented in Table 3-1. These requirements will result

in a special-purpose device which performs a reasonably complex set of

tasks, which places a minimum burden on the hardware and software for

the central computer, and which is likely to be relatively expensive

(since minimum satellite cost is not a primary goal, and the other

requirements will tend to maximize the hardware complexity of the

device). As we shall see, the baseline satellite is still not very

costly, despite these ground rules.

Basic Design Approach

Our general approach to the design of the satellite processor can

be described with the aid of Figure 3-1. Radar data enter the central

computer, at a maximum rate of 8500 reports per six seconds. Upon

input, they are temporarily stored in buffer memory (not shown) and

subjected to masking and mapping operations which limit the remaining

data to a maximum rate of 3600 reports per six seconds. The central

computer then sends each of the 3600 reports to the satellite processor,

where they are stored in a RADAR REPORT TABLE. At this point, each

report is represented by three 16-bit words, packed as follows:

20

Functions;

1. Coordinate conversion of all radar data not mapped or

masked.

2. Coarse track-association: Each radar report will be

"tagged" to show whether or not

it lies within 12 NM of any

track; the tag will not indicate

which track(s) the report

correlated with.

Programming Burden for the JSS Software: The satellite should be

as simple to use as possible. The processor should require no

bookkeeping by the programmer, and should not interrupt the

central computer at an excessively high rate. The satellite

should not require any significant increase in core memory

in the central computer.

Hardware Tradeoffs in the Satellite: No attempt should be made to

economize on the satellite's hardware at the expense of compli-

cating either the interfaces or the JSS computer hardware/soft-

ware.

Satellite Flexibility: The processor will be a fixed-program

machine whose program is stored in a Read-Only-Memory (ROM).

Site constants, however, will be read from the central computer

whenever desired.

Input/Output: The satellite will use one standard bi-directional

input/output channel of the central computer. Several control

lines will be used to indicate status of the data passing over

the single channel.

Table 3-1. "Baseline" Satellite Processor Requirements.

21

"I

RADAR
DATA

I N PUTS

COMPUTER MEMORY

RADAR
REPORT
TABLE

3 X 3600
WORDS

FRACK
TABLE

2 X 200
WORDS CPU

1

SITE
TABLE

25 X9
WOROS

1_

Bl- DIRECTIONAL
INPUT/OUTPUT

CHANNEL

1

JSS CENTRAL COMPUTER

SATELLITE PROCESSOR

SATELLITE MEMORY

1 1
RADAR
REPORT
TABLE

3 X 3600
WORDS

TRACK
TABLE

2 X 200
WORDS

MICRO
PROCESSOR

SITE
TABLE

25X9
WORDS

1

L. _J

Figure 3-1 BASIC COMPUTER/SATELLITE CONFIGURATION

22

TAG TO INDICATE
COARSE CORRELATION

Assuming the bi-directional input/output channel to be a 16-bit data

bus, there are at most 3 x 3600 16-bit radar-report words delivered to

the satellite processor's memory every six seconds. These data arrive

at the satellite more or less continuously throughout any given six-

second frame.

About three seconds after each frame begins, the JSS programmer

must arrange to send the appropriate track data to the satellite. It

is assumed that the central computer maintains a TRACK TABLE which

contains up to 200 pairs of X- and Y-coordinates, representing the

estimated position of each track at the center of the corresponding

frame; the table is updated every frame. Using the same input/output

channel, the contents of the central TRACK TABLE are transferred to a

similar TRACK TABLE in the satellite processor's memory.

At infrequent intervals, on demand, the nine constants K. through

K_ for each individual radar site are transferred over the channel

and stored in the processor. In some cases the site may require more

23

frequent updating, because the JSS might include mobile (balloon-borne)

radars.

At the beginning of each six-second frame, the raw radar reports

for that frame begin flowing over the channel and are stored sequentially

in the RADAR REPORT TABLE. The satellite's microprocessor immediately

starts the execution of the coordinate-conversion equations; when it has

completed the conversion for any given three-word report, it replaces

the original R, 9, and H values with the corresponding values of X, Y,

and H. During the first three seconds of the frame, the satellite can

perform coordinate conversions, but cannot begin coarse track-correlation

because the updated track coordinates are not yet available.

In the middle of the frame, the satellite's TRACK TABLE is loaded

with fresh data from the central computer, and the microprocessor can

begin to operate on the coordinate-converted data. It starts at the

top of the RADAR REPORT TABLE, and loads a pair of X- and Y-coordinates

into one of its internal registers. Then it sequentially tests that

report against every pair of track parameters from the TRACK TABLE;

if the vector distance between the report and any given track is less

than 12 NM, the microprocessor adds a "tag" (e.g., sets the low-order bit)

in the first word of the stored report to indicate coarse correlation

between the report and the track. To complete the coarse-correlation

process for the entire frame, the microprocessor must test up to 3600

radar reports against 200 target tracks.

24

Shortly after the end of the frame, the satellite has finished

its coarse track-correlation tests. The RADAR REPORT TABLE will now

contain up to 3600 three-word reports whose coordinates have been

converted, and which have been "tagged" for coarse correlation. The

entire RADAR REPORT TABLE is then transferred over the input/output

channel and loaded sequentially into an identical table in the central

computer's memory, to be used by the JSS programmer for display and

final track correlation.

The various operations described above require two types of inter-

leaving. First, the microprocessor must work its way down the RADAR

REPORT TABLE, executing the coordinate-conversion equations for each

report; halfway through the frame, it must simultaneously perform

coarse track-correlations beginning with the top of the table. Several

internal counters are needed to remember how many raw reports have been

received from the central computer, how many have had their coordinates

converted, and how many have been tested for coarse track-correlation.

Second, the input/output channel must be shared by four types of data:

site constants (sent infrequently to the satellite), raw radar reports

(sent continuously to the satellite on a one-at-a-time basis), track

data (sent quickly in a single block to the satellite), and processed

radar data (sent quickly in a single block back to the central computer)

JSS Programming Considerations

From the standpoint of the JSS software programmer, the satellite

can be considered almost as a subroutine. The programmer must remember

25

to do a few things in the correct order, hut these should not cause him

much trouble.

First, he must arrange to send over the site constants as frequently

as the radar situation requires; this might be done once per day for

fixed sites. The programmer loads a single table with all the constants

for all the sites (nine constants for up to 25 radars), sends a signal

to the satellite indicating that site data are on their way, and executes

a Direct Memory Access (DMA) transfer of the entire table to the satellite.

Next, he must send the raw radar reports to the satellite. Since

he must already have internal buffer tables to accomplish the mapping

and masking operations, this transfer is merely a matter of reading the

appropriate data from the tables in sequential order. The radar reports

in the central computer contain some data of no interest to the satellite—

e.g., the time associated with the radar detection, or various status

indicators—and the programmer must extract only the range, azimuth,

height, and site identification and pack them into three sequential 16-bit

words. Once packed, he may send the words in blocks or one at a time,

and it is not necessary for him to count the number of reports he has

sent. Whenever he sends a radar report, he must first set a control line

which allows the satellite to interpret the incoming data as radar infor-

mation.

During the collection of radar data, some other portion of the

central computing facility is preparing the latest estimate of track

positions for each target identified by the system. These estimates

26

must be loaded into a single TRACK TABLE, and the entire table must be

transferred to the satellite at about the middle of the frame. The

programmer must set an appropriate control line to inform the satellite.

Finally, shortly after the beginning of each frame, the JSS pro-

grammer must request a DMA transfer of the processed data from the

satellite into whatever table locations he wishes in the central

computer's memory. The programmer can rely on the completion of the

transfer before 0.5 second into the frame, or he may test a control

line from the satellite.

The satellite requires a "start of frame" signal from the central

computer; if this is not provided by the system hardware, it may be

necessary for the programmer to set a control line at the proper time.

In some computers (e.g., the larger IBM computers), a DMA transfer

of data does not interfere with the operation of the central processing

unit after the transfer has begun. In most other machines, each item

of data transferred over the input/output channel "steals" a cycle from

the central processor, and slows it down. DMA transfers at the highest

data rate can therefore stop the entire computer for the duration of

the data block. Since the complete shutdown of the computer for DMA

transfers to and from the satellite processor would represent an awkward

constraint for the JSS programmer, the satellite timing has been designed

to ensure relatively slow DMA transfers. Consequently, the programmer

need not worry about such transfers, and can execute them any time he

wishes.

27

Computations Within the Satellite Processor

Since the baseline processor is expected to perform a rather wide

variety of computations, it has been configured as a general-purpose

computer with some auxiliary special-purpose hardware. The basic com-

putational arrangement is shown in Figure 3-2.

The heart of the satellite is a 16-bit microprocessor. For the

baseline design, a relatively fast computer is needed, and we have

chosen to implement the CPU in the form of four four-bit "slices"

which can operate at a clock rate of 5 MHz if desired . Program

instructions are 24 bits long (containing 9-bit micro-instructions),

and the computer can manipulate 16-bit data words. Although the

basic computer can add, subtract, shift, and perform many logical

operations, it does not have hard-wired multiply or divide instructions;

these must be implemented as subroutines. The microprocessor includes

16 general-purpose registers which may be used for indirect addressing,

and which can be incremented or decremented automatically as part of

some other operation such as fetching data from memory.

The most sophisticated computations required of the satellite

involve the evaluation of the coordinate-transformation equations shown

in Section II. The transformations call for the calculation of two

sines, two cosines, a square root, and several multiplications and

additions. All arithmetic is performed in fixed point. As described

The specific element is the AM2901 bipolar four-bit slice processor
manufactured by Advanced Micro Devices, Inc.

28

I- p

O -I

I-

a.
t-

t- z
3 Z
Q- 4

*5

IT
O
CO
CO
UJ
o
O

E

LU

<
CO

LU

CO
<
CD

or
o

LU

LU
O
z
<
tr
cr
<

< z
o

3
Q-

O o

CO
I

ro

29

in Appendix A, four subroutines are used for multiplication, sine,

cosine, and square root. It is estimated that the total coordinate-

conversion portion of the program consumes 124 instructions and uses

36 stored constants. Since the microprocessor handles instructions

and constants (data) differently, they are stored in two different

read-only memories.

The second type of computation involves the tests for coarse

track-correlation. To test a given radar report against the 200

tracks, the microprocessor first fetches the X- and Y-coordinates of

the radar report and loads them into general-purpose registers. Then

it begins testing against the stored track data. In one instruction

it fetches the X-coordinate of the track and subtracts it from the

X-value of the radar report; in the next instruction it sends the

resulting value of AX to the Vector Test Unit shown in Figure 3-2.

In the following two instructions it fetches, subtracts, and delivers

AY to the Vector Test Unit. Since the fetch instructions automatically

increment the fetch-address registers, only six computer cycles are

required to produce AX and AY (two are need for counting and jumping).

The Vector Test Unit is a simple special-purpose device containing

some logic elements and a read-only memory. Its function is to rapidly

implement the following test:

T =/(AX)2 + (AY)2

If T j< 12 NM, then the radar report is
considered to be correlated with the
track.

30

The logic elements merely examine the high-order bits of AX; if any

of these bits are set, then T will clearly fail the test. Similarly,

the high-order bits of AY are tested. If neither AX nor AY are so

large as to fail this crude test, then AX and AY are each used as five-

bit addresses for a read-only memory. For any given pair of AX and

AY values, the memory contains either a zero or a one, indicating the

failing or passing of the coarse track-correlation test. Thus the

12-NM vector test can be hard-wired with a relatively small number of

digital logic chips, and this burden can be removed from the micro-

processor.

The microprocessor must perform many other functions, each of

which is almost trivial. As examples, it must participate in the

storing and reading of data transferred during DMA interchanges, and

must maintain eight of its general-purpose registers for keeping

the last radar data address entered, the current track data address,

the last track data address, etc. The details of the microprocessor

program needed to perform these miscellaneous operations have not been

worked out, but there appears to be more than adequate capacity in the

256-step program memory provided in the baseline design: If the

coordinate-conversion program uses 124 steps, and the coarse track-

correlation uses about 20 steps, then about 112 steps are left for

miscellaneous tasks.

Satellite Timing Estimates

As discussed in Appendix A, it is estimated that the coordinate

conversion of one raw radar report will require about 800 machine cycles.

31

If we operate the satellite-processor clock at 3 MHz (a value comfortably

below the manufacturer's specified maximum clock rate of 5 MHz), then

one conversion will consume about 267 microseconds. For a maximum of

3600 radar reports per frame, coordinate conversion will require a

total of

3600 x 267 microseconds = 0.96 seconds.

Appendix A also estimates that the attempt to correlate one radar

report with up to 200 tracks will require about 1200 machine cycles,

or 400 microseconds. At the upper limit of 3600 reports, the total

time required for coarse track-correlation is 1.44 seconds.

Ignoring site data, we must transfer

3 x 3600 16-bit words to the satellite (radar reports)
3 x 3600 16-bit words from the satellite ("tagged" radar reports)
2 x 200 16-bit words to the satellite (track data)

or a total of 22,000 words every six seconds. If we assume that the

transfer of each word will interrupt the microprocessor for three

machine cyles, then the total time expended in transfers of data is

22 milliseconds. Thus data transfers impose a negligible burden on

the microprocessor (and the central computer as well).

As shown in Figure 3-3, the process of coordinate transformation

can be carried out through most of the six-second frame, but the coarse

track-correlations must be done only during the last three seconds of

the frame; therefore, the second half of the frame is the busiest.

According to the estimates given above, the microprocessor will take

32

6 SECONDS

TRACK DATA
AVAILABLE

£
TIME

'////////////////////////////
, 'COORDINATE CONVERSIONS'''

7///////////////////////M

W777T7, TMWWWA
// TRACK-CORRELATION
/////////////////////// i

Figure 3-3 TIMING OF TASKS WITHIN DATA FRAME

33

1.44 seconds to perform all the coarse track-correlations, and 0.96/2

seconds to do half of the coordinate conversions, for a total of about

1.92 seconds of CPU capacity, leaving another 1.08 seconds for miscel-

laneous and overhead functions during the last half of each six-second

frame. These estimates assume that the radar data entering the system

are uniformly distributed in time, an assumption which should be nearly

correct when many independent radars are providing the data. In the

worse case, where all of the data in a frame enter during the last three

seconds, the microprocessor will take 1.96 seconds for correlation and

0.96 second for coordinate conversion, or a total of 2.40 seconds

(leaving 0.6 second for miscellaneous chores). We may conclude that

a single microprocessor can accommodate the satellite's needs, even

for the most unfavorable distribution of raw radar data.

Overall Design of Baseline Satellite Processor

Having discussed the various major items in the processor's design,

we may now consider the overall block diagrams of the device. Figure

3-4 shows the microprocessor and its various memories, and Figure 3-5

shows the ten control functions connecting the central computer to the

satellite.

The four microprocessor "slices" do not actually constitute a

computer, but must be supplemented by a look-ahead "fast carry" chip

that services the four CPU slices, two program-sequencer chips, three

read-only memories containing 256 24-bit program instructions, and a

24-bit latch to hold the last program instruction. Hence, we need

eleven chips to form the computer.

34

cc
o

to
u o
o
a.
LU

t-
<

o

<

<

CD

10

35

SI
DAT

RADAR
DATA

FRAME _T\.
SYNC \y~

TRAC
DATA

TRACK DATA
FINISHED

INPUT/OUTPUT

DATA _/\
READY \J^

DMA
ACKNOWLEDGE <

DMA —J^S-
REQUEST \y0r

FF a

CK

CK
FF 0

FF '
CK «

1~

CONTROL
LOGIC

l-!

PL>H

=OF

FF » FLIP FLOP

—D>-'BU
FFER

CONTROLS TO
PROGRAM
SEQUENCER

MICRO-PROCESSOR

FROM MICROPROCESSOR
LATCH

FF
C K

3 MHz
CLOCK

£>

-» TO J- STATE
RECEIVER

"*• 8 RECEIVER

it>£> TO

COMPUTER
CLOCK -D>

Figure 3-5 CONTROL LINES FOR SATELLITE PROCESSOR

36

A large fraction of the satellite's hardware (79 LSI packages or

chips out of a total of 111) is devoted to digital memories. The random-

access memory used to store the radar reports requires 50 LSI chips

capable of holding over 170,000 bits; however, the organization of

the satellite permits this memory to be relatively slow. The present

line of commercial slow random-access memories offers 4096 bits of

storage in a single chip; improved memories giving 16,384 bits on

one chip will be available soon, promising a dramatic reduction in

the size and cost of the overall unit. Sixteen integrated-circuit

packages are required for the fast random-access memory used to hold

the 200 pairs of track coordinates.

The ten control functions between the satellite and the central

computer are used as follows:

1. Computer clock to satellite.

2. DMA request to satellite.

3. DMA acknowledge to computer.

4. Beginning-of-frame signal to satellite.

5. Signal from computer to indicate whether the input/output
channel is being used as input or output.

6. Signal to the central computer indicating that the processed
data are ready for transfer back to the computer.

7. Signal to satellite indicating the end of the track data.

8. Site data

Q k H \ Signals from the computer indicating the
I type of data being sent over the channel.

10. Radar data
J

37

Obviously, these ten control functions can be encoded to reduce the

number of physical control lines between the computer and the satellite,

or to accommodate computer constraints. Control function No. 6 can be

eliminated if the JSS programmer is willing to wait the full 0.5 second

after the start of a frame to begin his manipulations of the processed

data.

These control functions permit a very flexible approach to data

transfer, and relax many constraints on the JSS programmer that might

ordinarily be imposed. For example, control function No. 7 (end of

track data) allows the programmer to send the track data either in a

block or as a separate set of transfers; furthermore, he can finish

his track transfer at any reasonable but arbitrary time, and need not

send the entire maximum list of 200 track coordinates if less than 200

are given. It is assumed that the JSS programmer will send over the

entire list of 9 x 25 site constants whenever the site data are to be

changed.

As mentioned above, the microprocessor uses eight of its internal

general-purpose registers as address registers to control the various

interleaved sequences of coordinate-conversion and coarse track-

correlation computations. Another problem to be accommodated is the

overlap in the processing for successive frames; when data from the

previous frame are being returned to the central computer, new radar

data are being sent to the satellite. Appendix B contains a somewhat

more detailed description of the use of the reference address registers,

as well as comments on DMA operation.

38

The block labelled "logic box" in Figure 3-5 is implemented with a

programmed logic array plus associated small-scale integrated components.

Its purpose is to generate the appropriate program step or input/output

control signals corresponding to the state of the program and the input/

output control lines. It causes the program sequencer to increment

until a program "jump" condition or a DMA requirement is encountered.

When responding to a DMA request, the request is not relayed to the

control logic until those times in the program when it is convenient

for the microprocessor to react, i.e., generally not during a subroutine.

A flip-flop then transfers this request to the control logic which acts

according to the status on the input control lines in directing the

sequencer to the appropriate program step. When this occurs (at the

internal clock rate), the satellite processor issues a DMA acknowledge

signal and accepts the clock signal from the computer. The DMA condition

continues until the DMA Request control line is returned to normal, at

which time the normal operation of the processor resumes.

Hardware Cost Estimates for the Baseline Processor

As discussed previously, the satellite baseline processor could

be fabricated using approximately 111 integrated-circuit packages.

Of these, 11 are associated with the implementation of a general-purpose

microcomputer, 79 are various types of random-access and read-only

digital memories, and the remainder are miscellaneous logic circuits.

Although we have considered all of the essential elements and

many of the details of the baseline processor, we have not attempted

39

to carry out a fully complete design. Our primary purpose in this study

is to estimate the characteristics and impacts of such a processor, and

a totally finished design is not necessary to meet these goals. In

addition, the JSS itself has not been specified in any great detail at

the present time, and even the types of computers have not been selected;

the principal uncertainty in our satellite design lies in the input/output

and interface considerations, and they cannot be addressed explicitly

until the central computer has been chosen.

Thus, the estimates of the cost of the satellite processor are

not exactly correct, but they are believed to be accurate to within

a few hundred dollars.

Table 3-2 presents a list of integrated-circuit components,

specified by manufacturer's part number except for some minor items,

for the baseline processor. The costs are given for unit quantities,

and take no advantage of volume purchase. (It should be noted that a

10 to 30 percent discount could be obtained if the 111 LSI packages

for just one satellite were bought through a single vendor.)

The cost of assembling these components onto boards, installing

them into a suitable box with the necessary connectors, switches,

lights, power supplies, etc., and a minimum of testing, can be estimated

on the basis of between six and ten dollars per integrated circuit.

Six dollars per integrated circuit is often quoted in industry for this

cost; we will use eight dollars to be conservative. The total cost for

assembly, installation, and testing is therefore estimated to be $890.

40

MICROPROCESSOR:

CPU AM2901 4 ea @ $ 60.00 $ 240

Sequencer AM2909 2 ea e 42.12 84

Fast Carry AM2902 1 ea e 5.67 6

Latch N74S174 4 ea e 7.69 31

ROMS:

Program SIG 8204 3 ea i 21.00 63

Constants 82S123 4 ea @ 6.45 26

Correlation 82S123 2 ea e 6.45 13

RAMS:

Target Data SIG 8107B-4 50 ea @ 16.00 800

Track Data 82S11 16 ea 8 45.00 720

Site Data AM2971 4 ea e 20.00 80

ASSOC. MSI LOGIC: 10 ea 100

I/O CIRCUITS: 10 ea 100

OSCILLATOR: 1 ea

kages

15

111 pac $ 2277

Lumped estimates are given above for miscellaneous
MSI digital logic and for the input/output circuits.

Table 3-2. Cost Estimates for Integrated-Circuit Components.

41

The total cost for components and construction of the baseline

satellite processor is estimated as follows:

Component Cost $ 2277

Assembly Cost 890

Total $ 3167

The design and development costs to take the baseline from its

present status to a completely operational prototype should not take

more than a few weeks of engineering time, once the detailed character-

istics of the central computer interface have been specified.

The baseline processor has not, of course, actually been fabricated.

We can approximate its physical form by mounting 111 integrated circuits

on a standard printed-circuit board measuring 17 x 8 inches. Figure 3-6

is a photograph of such a simulated device. In the JSS environment, it

could be incorporated in other digital devices having spare slots (e.g.,

the central computer) or a separate box with power supplies could be

devised.

Programming and Testing the Satellite Processor

In some applications, the programming of a microprocessor can

represent a costly four-fold chore—the basic program is first developed

and tested on a large computer using a high-order language such as FORTRAN;

the symbolic code is next converted to microprocessor machine instructions

using a "cross-compiler"; the machine-language program is then tested on

an "emulator"; and finally the program is loaded into a PROM, and the

whole assembly tested in actual operation. It can be argued that this

42

u
o
a
0]
a)
y
o
H

PH

•a
a)

i

o

,a

60
o
u
O

PH

I
CO

w
Pi

43

process is much more expensive per finished instruction than the

equivalent operation on a conventional large-scale computer.

The program for the satellite can be developed without most of

these time-consuming steps, because the basic processor functions are

so simple. By using certain efficient testing techniques, the entire

procedure can be completed in a few man-weeks at a correspondingly

low cost.

As described earlier, the complete program occupies less than

256 machine-language instructions. A program of this size can be

written directly in machine language by one knowledgeable person in

a day or two, on the basis of the brief programming analyses presented

here and in Appendix A. It should not be necessary to deal with higher-

order languages, or even an assembly language (although the latter would

be convenient).

Testing of the satellite processor and its program can proceed

simultaneously, in two distinct phases: laboratory or "bench" tests,

and operational tests using the central computer as the principal tool

for exploration. These two phases and the test methods employed in

each are outlined below. There should be no need to utilize an "emulator"

or any similar indirect techniques.

We assume that the satellite processor is physically complete, and

that the operational program has been written and loaded into the PROM

associated with the satellite's microprocessor. We also assume that

the laboratory has the standard equipment to load PROMs, using paper-tape

44

input; the procedure is to take a hand-written assembly-language program,

punch a paper-tape version of the program, load the program into the

PROM, and physically insert the PROM into the satellite.

In the laboratory testing phase, the traditional approaches to

debugging digital hardware can first be employed on the satellite

processor, to assure ourselves that the presence of certain signals

on the control leads will cause the desired logical actions within the

unit. Next, some embryonic test programs (consisting perhaps of 10 or

20 machine-language instructions) are loaded into the PROM, to cause

the microprocessor to transfer data from one portion of the satellite's

memory to another; these transfers will be performed repetitively, and

the movement and arrival of stored data can be observed with an oscillo-

scope. When these simple operations can be executed without error, the

full program is loaded into the satellite, and a few of the control

lines (e.g., the "frame sync" line) can be pulsed with external test

equipment at the proper rates. The satellite should cycle through its

program, and exhibit specific actions at certain times within the cycle,

thereby giving some general indication that the unit is functioning as

expected. The principal purpose of the laboratory phase is discover

any hardware-oriented errors.

In the second or operational phase of testing, the satellite is

connected into the central computer using all of the interfaces planned

for full-scale operation. Then a series of evolutionary tests are

arranged, where each test calls for the writing of a simple program

45

(in high-order language) for the central computer, and either a short

assembly-language program or the full-scale program for the satellite.

An example set of tests might proceed as follows. The central

computer would first be programmed to send the "track" table to the

satellite once per frame, and the satellite would be programmed to

receive the "track" table and store it in its corresponding RAM; it

should be possible to write and load these two short test programs in

less than one hour. In execution, the behavior of the control lines

and the interfaces, and the movement of the data from computer to

satellite can be observed directly with the proper test equipment,

and any problems should be simple to diagnose. Similar separate tests

can verify the performance of the commands to move target data and site

data to the satellite, and tagged target data from the satellite to

the computer. Next, a series of tests of gradually increasing complexity

can be used to test the overlapped transfers of data back and forth,

the coordinate-conversion portion of the processing, the track-correlation

portion, and finally the combined operation of all processes.

It is expected that ten to fifteen short test programs would be

written during the second phase; and, if the operational satellite

program initially contains several errors (which is likely), the full

program will have to be laboriously re-written many times before it is

completely satisfactory. It is important to note, however, that the

test programs are individually trivial, and the full operational program

can be modified in a few hours.

46

Using the methods outlined above, we believe that a single person

could comfortably program and test the baseline satellite processor in

a few weeks. This person would have to be familiar with the central

computer's software, as well as knowledgeable in both the hardware

and software aspects of the satellite's microprocessor and its inter-

faces .

47

SECTION IV

OTHER SATELLITE PROCESSOR OPTIONS

The previous section has described a "baseline" satellite

processor for the JSS, designed to perform the functions of coordinate

conversion and coarse track-correlation. Both the functions and the

design of the baseline device were selected rather arbitrarily, for

the purpose of presenting a specific example in enough detail to

make the conclusions (with regard to programming and cost) credible.

In this section we will discuss a series of design options for a JSS

satellite processor. We will not attempt to consider all of the

possible options, nor to give detailed information about any given

version; instead, we shall merely outline the more important

characteristics of some options, and rely on the reader to make the

necessary extrapolations in complexity and cost with respect to the

baseline satellite.

First we shall discuss a few variations on processors which

perform essentially the same functions as the baseline satellite.

Then we shall suggest other additional functions that might be

performed by a suitable processor. As before, we shall confine

ourselves to those operations near the front end of the JSS.

Minor Variations on the Baseline Satellite Processor

The baseline processor could be implemented in the form of two

separate processors, one devoted to coordinate transformations,

48

and the other dedicated to coarse track-correlation. Presumably

each device would employ its own micro-processor and would incorporate

its own internal memory; each would need a bi-directional interface

with the central computer. Although the equipment would be more

costly than the baseline device, the two units would have greater

computational capacity, and therefore could handle a larger data

load if desired.

A simpler satellite could be devised which relied on the central

computer for storage of the raw radar data; memory requirements in

the satellite would thus be greatly reduced. In this version, the

satellite would sit idle until the track data could be transferred

from the central computer (about three seconds after the start of the

frame). Then each raw radar detection would be sent to the satellite,

processed, and returned to the computer on a one-at-a-time basis;

there would be no need for the satellite to "remember" more than one

radar detection. The penalty for this simplicity is a small amount

of additional difficulty in using the satellite. It would be necessary

for the JSS programmer to arrange the data transfers with more care,

and to perform some minor bookkeeping on the number of radar data

points. A secondary variation on this one-at-a-time technique is

to utilize a small buffer memory for radar data in the satellite

(capable of storing, say, 100 detections); then the data transfers

could be performed more easily by the JSS programmer, but he would

have to expend somewhat more care in the bookkeeping portion of his

responsibilities.

49

Increasing the Capability of the Satellite Processor

Several embellishments on the basic baseline processor are

discussed below.

Additional Correlation Data

The baseline processor accomplishes the coarse track-correlation

task by adding a "tag" to the radar data; presence of the tag indicates

that the radar detection was within 12 NM of at least one of the target

tracks. With a relatively small addition to the satellite's hardware,

it would be possible to give the JSS central computer more information

about the correlations. In particular, the satellite could identify

which track(s) correlated with each radar detection, and could also

give the vector distance between the detection and the track. If the

tracking algorithms used in the JSS operate on the basis that no more

than one radar detection should be associated with each track, and/or

that each track should be associated with no more than one detection,

then the satellite could perform these decisions and selections prior

to sending the tagged data back to the central computer. These

burdens could be rather easily accommodated by a satellite processor,

and could lift a considerable computational load from the JSS computer.

Mapping and Masking

One of the important functions of the central computer is to

limit the amount of incoming data, so that subsequent processing will

not be overtaxed. When the input data loads are too high, the JSS

rejects certain data on the basis of masking and mapping operations,

50

which are sets of tests dependent upon the geographical position

and the type of each radar detection. The raw radar data can enter

the system at a total rate as high as 8500 detections in any given

six-second period; the mapping and masking procedures must place an

absolute upper bound of 3600 detections in any given six-second frame.

It is certainly feasible for a satellite processor to perform these

operations, and thereby relieve the central computer from any direct

interaction with the raw radar data. A separate satellite could be

designed to handle the mapping and masking tasks, or these functions

could be incorporated into the same device which executes coordinate

conversion and coarse track-correlation on the radar data. Since all

of these operations require the shuttling back and forth of fairly

large quantities of radar data, it seems more efficient (from the

JSS programmer's point of view) to combine all of the functions into

one device.

The decision rules upon which mapping and masking are implemented

are fairly complex, and will undoubtedly be revised in accordance

with practical field experience. Generally, they involve two main

elements. First, geographical regions are defined, and each data

point is tested to determine whether it lies within the given region;

each region is described in terms of two ranges and two azimuths,

and its location and size can be adjusted by the JSS operators.

Typically there will be many such regions, in areas of the total JSS

coverage where target traffic may be heavy but not particularly

51

interesting (e.g., near an airport). Second, the tests are dependent

in a complicated way upon the type of radar data under examination.

For example, data may be identified as a "skin" radar report, an

IFF report, a radar detection with or without height information,

or one of a class of special synthetic test targets.

None of the operations described above are difficult to execute,

and are quite appropriate for a fixed-point arithmetic unit of modest

word size—i.e., they are well suited to implementation on a micro-

processor. However, the decision rules are likely to change during

the development and exercise of the JSS, and it would not be desirable

to produce a satellite processor whose internal software could not

be changed easily. One solution to this problem of software flexi-

bility is to include the facility for storing the satellite's program

in the central computer, and reading that program into the satellite's

temporary program storage from time to time. In this fashion, the

JSS programmer would have complete control over the particular

decision algorithms being executed in the satellite, and could change

them whenever he wished.

Unpacking

The raw radar data entering the JSS contain information that is

not directly of interest to the baseline satellite processor. For

example, the data include the time at which the detection or report

was made, and various status indicators. For the baseline design,

the JSS programmer was expected to sort out and "unpack" the raw data,

52

and rearrange only the pertinent information into a particular

format (e.g., three 16-bit words). Later, after these data had

been processed by the satellite and returned to the central computer,

the JSS programmer was expected to associate each processed report

with its corresponding auxiliary information. Although these JSS

programmer responsibilities are very simple, even they can be

eliminated by a suitable change to the baseline satellite design.

The satellite could be configured to accept truly "raw" data

from the radar sites, without requiring any changes in format or

any attention whatsoever from the JSS programmer. The satellite

could take responsibility for sorting out all the auxiliary infor-

mation, re-formatting internally where desirable, and could then

transfer all the data back into the central computer's memory after

the mapping, masking, coordinate conversions, and coarse track-

correlations had been completed.

53

SECTION V

COST IMPACT ON THE JSS SYSTEM

Our principal motive in studying "satellite" processors as applied

to JSS has been a significant reduction in system costs. It is unfor-

tunately true that, while specific hardware designs for special-purpose

devices can be developed easily, it is extremely difficult to assess

the quantitative savings in cost which these devices might allow.

We begin by noting that the cost of the baseline satellite processor

is negligible in comparison with the cost of the entire JSS ($5000 com-

ponent cost plus a relatively small development cost for the satellite,

versus an estimated cost of several millions for JSS equipment, software,

and integration). Other more elaborate versions of satellite processors

which include, for example, the ability to perform masking and mapping

will require more components and involve more development; nevertheless,

the total cost of even an advanced satellite can be neglected.

There are many contributors to the overall cost of a large system:

hardware, software, testing, documentation, maintenance, training,

spares, etc. It is well beyond the scope of this report to consider

any but the first two items. We can look for hardware savings from the

satellite-processor, in terms of reducing the number of computers in

the system or through a reduction in the size of the computer(s).

We might anticipate software savings, because the use of the satellite-

processor would "free up" a relatively large portion of one or more

computers, thereby relaxing some of the constraints on optimization of

54

real-time programs. Or we could argue for both hardware and software

savings simultaneously. As we shall see, it will be difficult enough

to quantify savings for either hardware or software alone, and we can

only speculate on the magnitude of any combined advantages.

Let us begin by considering the possibility of hardware savings.

Our task would be made immensely easier if the initial system configura-

tion (before the introduction of a satellite processor) has already been

subdivided into relatively independent computers; if we can eliminate

one or more of these computers by adding a satellite, then the hardware

savings can be directly attributed to the processor. In the case of

JSS this process is blurred because the configuration of the central

computing facility for the various ROCC's has not yet been finalized,

and we are forced to employ our own judgement or the informal estimates

of industrial contractors.

Rather early in the history of the JSS program, MITRE generated

several different configuration concepts in the course of its own

internal analyses. One of these configurations was shown in Figure 2-2;

it has no special merit, but at the time it did seem to be one reasonable

approach to the design of a ROCC. Each of the computers shown in Figure

2-2 is a "medium scale" computer, roughly in the same class with the

Hughes H5118M general-purpose digital computer.

The H5118M computer is a modular, 18-bit, binary, parallel, syn-

chronous system intended for real-time command and control applications.

It can execute a fixed-point addition in 2.0 microseconds and a fixed-

point multiplication in 4.6 microseconds, and its memory can be expanded

55

si * IE CO
•J Qj UJ

O Z o
10 < o

o o o (D 0 o

C
O

M
P

U
T

E
R

©

C
O

M
P

U
T

E
R

©

A
ui or
ui o
u> u.

3 ui

£ o
< IE
VI 0.

11 o o C
O

M
P

U
T

E
R

©

i

1

i

1 '

> 1

1 1 > 1

I

§
CO
CO
UJ
o
o
or
o.

UJ

CO

CO
3

<

o

o
o

(O
CO
-i

o
UJ
I-
CO
UJ
o
o
CO

to
IE
UJ
»-
z

" < CO <

o o < U.
IE Z

o
o

56

to a maximum of 131,000 words. The cost for an H5118M with dual

processors and full memory lies between $300,000 and $400,000. On

this basis, the total cost for the computers shown in Figure 2-2 is

nearly two million dollars, not including the additional computers

required for redundancy and testing.

If the baseline satellite processor (which performs coordinate

conversion and coarse-track correlation) were used with this system

configuration, then one of the two computers at the input end could

be eliminated. The remaining input computer would handle the multiple-

radar data, perform the masking and mapping operations, communicate

with the satellite processor, and interface with the rest of the system.

Thus the hardware savings could be greater than $300,000.

If an "advanced" satellite processor, capable of performing the

masking and mapping operations as well as coordinate conversion and

coarse-track correlation, were used then both medium-scale input

computers could be eliminated and replaced by a single mini-computer

as shown in Figure 5-1. The mini-computer's functions would be merely

to input the raw data from the multiple radars, communicate with the

satellite processor, and interface with the remainder of the system.

The hardware savings could be greater than $600,000 in this case.

The previous discussion was based on the initial configuration shown

in Figure 2-2, with the assumption that both of the input computers

were of the "medium scale" class. Later studies by MITRE and industrial

contractors have suggested that a somewhat smaller set of computers

57

might suffice for the ROCC; some estimates have even suggested that

only two "medium scale" computers would be adequate for all the required

functions. The straightforward substitution of one satellite processor

for one or two computers is not valid in these cases, since each com-

puter is being utilized for many functions besides track-correlation

and coordinate conversion. Unless we can argue that the introduction

of a satellite processor will actually eliminate one or more computers,

or will permit us to perform the same job with a smaller computer, our

claims for hardware cost savings are weakened. The example above in

which we could save over $600,000 probably represents an extreme position.

The use of special-purpose hardware to reduce the cost of software

development is a controversial subject at best. Many experienced software

designers do not believe that special hardware offers any potential for

savings, and bidders for military software contracts are probably not

inclined to experiment with new approaches at the present time. The

controversy seems to focus on two principal assertions by advocates of

the "conventional" large-computer approach: First, they suspect that

there are large hidden costs associated with the specification, design,

programming (of the special devices), debugging, testing, integration,

maintenance, and modification of special hardware. Second, they point

to significant recent improvements in the art of software design—"top-

down" and "structured" programming techniques, primarily—which offer

the same organizational benefits of careful discipline and partitioning

that have been employed in the hardware-design field for decades.

58

Resolution of the general controversy is well beyond the scope of

this document. By suitably restricting our assumptions for the particular

case at hand, however, we may gain some insight into the problem. Let

us assume that the system designer has already studied the system require-

ments and has decided to implement the system in the form of a single

central computer, without any satellite processors. Further, let us

suppose that he has already chosen a computer which is large enough and

fast enough to do the entire job. Finally, we imagine that he has per-

formed studies on algorithms for coordinate conversion, track correlation,

mapping, and masking, and that he knows exactly what he needs from each

process by way of accuracy and timing. Having gone this far, we now

offer the designer a choice: He may develop the software for his system

as it stands, or he may add a satellite processor and then develop the

software. Under these circumstances, will the addition of a satellite

processor save money in the development of the software? Note that here

the designer is not free to change his original computer selection.

It is helpful to consider the processing load placed on the computer

by the requirements for mapping, masking, coordinate conversion, and

track correlation. Without going into detail, we can guess that each

radar detection entering the system (at an average rate of 1400 reports

per second) will require five computer instruction-cycles to perform

the mapping and masking functions; thus about 7000 instructions per

second would be used for mapping and masking. Under the assumption

that our computer uses software subroutines in the calculation of sines,

59

cosines, and square roots, a brief study shows that we might use 68

instruction-cycles to perform the coordinate conversions on one radar

report; at an average report rate of 600 per second , the coordinate-

conversion process will consume about 41,000 instructions per second.

Estimates for the coarse-track correlation process are complicated

by the large number of different approaches that might be used in the

algorithm. The straightforward approach would test each of the 3600

reports against each of the 200 tracks, for a total of 720,000 tests.

To test whether a given radar report is within 12 NM of a given track,

it is necessary to execute about 12 instructions. A more efficient

method would be to first subdivide the whole geographic coverage area

into "strips" or "blocks", and then sort both the radar reports and

the tracks into the various sub-areas; in this way we could avoid some

unnecessary tests. For example, if we used five "strips", then we

would need to make only 144,000 tests, at the expense of some additional

bookkeeping. With five "strips", a total of about 1,800,000 instructions

must be executed to perform coarse-correlations on all 3600 reports,

but these tests must be completed within the last three seconds of each

frame, for a peak rate of approximately 600,000 instructions per second.

Other coarse-track algorithms might be devised to reduce the requirements

on the computer, but it is clear that track-correlation represents a

heavy processing load.

*
After mapping and masking, the "raw" input reports are reduced to
600 reports per second for subsequent processing.

60

In Section III we discussed the procedures by which the satellite

processor could be programmed, debugged as a unit, and tested with the

central computer. If these procedures are as effective as we hope,

then the cost associated with the development and testing of the satellite

processor should be small compared to the total cost of the JSS. Let us

assume that processor-development costs can be neglected.

In terms of the assumptions above, our question can now be restated:

Will the addition of a zero-cost satellite processor (which will probably

relieve the central computer of performing more than 600,000 instructions

per second) save money in the development of the software? Potential

cost-savings in software development will be reflected in the size of

the computer program, and in the difficulty of writing and testing the

program. These two aspects will be discussed below.

Based on experience with the Back-Up Interceptor Control (BUIC)

system and other related multiple-radar tracking systems, we estimate

that the radar-input portion of the JSS software might contain between

2000 and 3000 instructions (including mapping, masking, and coordinate

conversion) and that the coarse-correlation software might contain

1000 instructions. Therefore the size of the overall software system

will be reduced by perhaps 3000 to 4000 instructions using a satellite

processor—a reduction of only a few percent to the total program.

One way to estimate a cost savings is to assign an average cost for

a single "finished" or "polished" instruction, and multiply this figure

by 3000 or 4000 instructions. At (say) $30 per "polished" instruction,

61

the cost-reduction estimate would be $120,000 which, although not

large in absolute terms, is nevertheless much more than the cost of

the satellite processor. The difficulty with this form of estimation

is that there are too many variables implicit in determining an average

per-instruction cost, and the final estimates consequently lack credi-

bility.

Although quantitative data are sparce, it is generally believed

that the total cost of a computer program is a strong function of the

degree to which the computer's capacity is stressed. This is especially

true for programs which must operate in real time. Thus the closer a

program must operate to the machine-dependent limits imposed by the

computer's speed and memory, the higher the programming costs; and as

these limits are approached, the cost increases rapidly. As examples,

real-time software is thought to be five times more costly than non-

real-time software, on the average , and programs which demand 90 per-

cent of a computer's speed and memory capacity may cost three times

T21
more than routines which utilize only 50 percent of capacity .

With this in mind, we may view the satellite processor as a way

to retreat from the limitations imposed by our choice of a computer—

to move away from the machine's performance thresholds, and out of the

high-cost region. It is easy to imagine that the addition of an advanced

satellite, which can relieve the JSS computer of up to 600,000 instructions

per second, might move the software problem from the 90 percent to the

50 percent region of machine capacity, and we could credit the satellite

62

with reducing software costs by a factor of three, or more than one

million dollars.

This kind of cost-saving estimate serves merely to suggest the

impressive potential of the satellite processor in certain cases. It

also shows that such savings are influenced by the choice of the central

computer: If the computer is selected to be just barely large enough

and fast enough for the JSS problem, then the addition of a satellite

could save perhaps two-thirds of the programming costs; but if the

computer is initially operating well below its capacity (a more expensive

computer), then the satellite might not strongly affect the cost of

writing the software.

In summary, we have not succeeded in making quantitative estimates

of the satellite's impact on the cost of the JSS. Subject to a variety

of assumptions and constraints, we have argued that a satellite processor

might save as much as $600,000 in direct hardware savings. With an even

more restrictive set of assumptions, we estimated software savings of

more than one million dollars. These estimates are probably mutually

exclusive, i.e., the satellite processor would be unlikely to demonstrate

large savings in both hardware and software simultaneously. The real

point of the exercise is to establish the potential for significant

cost savings far beyond the development cost of the processor.

63

SECTION VI

CONCLUSIONS

We believe that special-purpose processors, used in "satellite"

configurations with a general-purpose computer, can represent a powerful

way to simplify the overall system architecture, lower the equipment

costs, make the computer programming easier and less expensive, and

greatly expedite testing and debugging.

Satellite processors are especially well suited for mathematically

simple functions that must be repeated rapidly and often. The conversion

of radar reports from polar coordinates to rectangular coordinates is

one such function; the correlation of radar reports with target tracks

is another.

The Joint Surveillance System (JSS) was selected here for study

because it offers the typical mixture of equipment and computational

problems found in relatively large data-processing centers. A "baseline"

satellite processor, designed to perform coordinate-conversion and track-

correlation in real time, was worked out in detail to provide a specific

example in terms of hardware and software complexity, size and cost,

and interfaces with the central computer.

The potential cost benefits to JSS will, of course, depend heavily

on the particular system configuration and on a large number of other

assumptions, e.g., the manner in which the system tasks are subdivided

among the various computational elements. For one set of assumptions,

64

the use of an "advanced" satellite processor (whose total cost, including

development, is considerably less than $50,000) could result in a net

savings of nearly one million dollars.

The processor described in this document has been specialized to

the JSS requirements, but the general techniques used in its design can

be applied to other track-while-scan radar surveillance systems. It

is likely that similar devices could be equally attractive for use with

FAA radars, the AWACS airborne surveillance platform, the Conus Over-

the-Horizon radar, and a variety of tactical radars.

65

APPENDIX A

ESTIMATES OF MICROPROCESSOR PROGRAM SIZE AND TIMING

The major tasks to be performed by the microprocessor in the

"baseline" satellite are the conversion of the raw reports from

polar coordinates to cartesian coordinates, and the calculation of

position differences between the radar reports and the target tracks

(in support of the coarse track-correlation operation). The pro-

gramming considerations for these two processes are described in

more detail below:

Coordinate Conversion

Given a radar report consisting of a slant-range measurement R,

an azimuth measurement 8, and a height measurement H, it is desired

to perform the following calculations to produce the X- and Y-values

of the report:

= A2 - (H-K,)2

a = 0 - K„

Let ¥ = A - (H-^)

then

v2

B = 2a - K

X - K. + Kc F sina + K, F
2 sing 4 5 6

Y = K? + Kg F cosa + Kg F
2 cosg

where L , L (••• L are site constants.

66

Since the microprocessor selected for our study does not have

a hard-wired capability for multiplication, we will use a software

multiply-routine, and choose algorithms which avoid division.

The coordinate-conversion program will use four subroutines:

multiplication, sine, cosine, and square root. Particular algorithms

optimized for the microprocessor have not been worked out in detail,

but we have selected representative methods for performing these

functions for the purpose of estimation. The subroutine for multi-

plication will require about 20 program instructions, and will consume

about 20 machine cycles during execution. The sine subroutine is

based on a four-term power-series expansion; it will require about

20 program instructions and four constants, and will take about

170 machine cycles to execute. The square root subroutine employs

a combination of table lookup and power-series expansion; its

program occupies about 30 instruction locations and uses 32 constants,

and it requires about 40 machine cycles to execute. Finally, the

cosine subroutine evaluates the expression

.•AT- ••* cos $» + /!- (sin <(>)'

It requires about 10 program instructions and takes about 70 machine

cycles to execute. In summary, the subroutine characteristics are

shown below:

67

Subroutine Instructions Constants Execution Time

Multiplication 20 — 20 cycles

Sine 20 4 170

Cosine 10 — 70

Square Root 30 32 40

80 total 36 total

Table A-l shows a version of the program that might be suitable

for the coordinate-conversion manipulations. The program contains

44 instructions, and requires 768 machine cycles to execute; it also

2
requires temporary storage for variables T, F, F , sing, cos3, and

sina, some or all of which can be accommodated within the available

16 general-purpose registers in the microprocessor itself.

For purposes of estimation, we shall assume that the total

coordinate-conversion program requires 124 program instructions

(80 for subroutines and 44 for the program itself) and storage for

36 constants. If we allow some margin—e.g., to execute various

shifting operations to avoid the loss of precision with fixed-point

arithmetic—we may estimate that the overall program would require

800 machine cycles to complete the coordinate conversion of one radar

report.

Coarse Track-Correlation

As discussed in Section III, the process of coarse track-

correlation can be implemented through a combination of general

microprocessor operations and special hard-wired logic operations.

68

The microprocessor is expected to calculate two arithmetic differences

and deliver them to the hard-wired device. The two values desired

from the microprocessor are AX and AY, the difference between the

X-value of the radar report and the X-value of the target position,

and the corresponding difference for the Y-coordinates of the report

and the target. Since the hard-wired logic can perform its function

in one clock cycle, the timing constraints are set by the micro-

processor.

Table A-2 shows a version of the sub-program that might be

suitable for the calculation of AX and AY, and their delivery to

the hard-wired logic.

We have taken advantage of the microprocessor's internal

registers and their capability for automatic incrementing within an

instruction. The principal time-consuming computational loop involves

six instructions and requires six machine cycles to complete. Since

the satellite must test each radar report against as many as 200

target tracks, we can estimate a maximum of 6 x 200 or 1200 machine

cycles for the coarse correlation of one radar report. This ignores

the time required to set up the various microprocessor registers and

perform other housekeeping functions, but these operations represent

a very small fraction of the total time used in coarse track-correlation.

69

INST.
NO.

INSTRUCTION
NO.
OF
STEPS

1 FETCH H 1

2 SUBTRACT Kx 1

3 STORE IN T 1

4 MULTIPLY BY T 20

5 STORE IN T 1

6 FETCH R 1

7 MULTIPLY BY R 20

8 SUBTRACT T 1

9 CALL SQ ROOT 40

10 STORE IN F 1

11 MULTIPLY BY F 20

12 STORE IN F2 1

13 FETCH 0 1

14 SUBTRACT K2 1

15 STORE IN T 1

16 MULTIPLY BY 2 1

17 SUBTRACT K3 1

18 CALL SINE 170

19 STORE IN SIN6 1

20 CALL COSINE 70

21 STORE IN COSB 1

22 FETCH T 1

INST.
NO.

INSTRUCTION
NO.
OF
STEPS

23 CALL SINE 170

24 STORE IN SINa 1

25 CALL COSINE 70

26 MULTIPLY BY F 20

27 MULTIPLY BY Kg 20

28 STORE IN T 1

29 FETCH COS6 1

30 MULTIPLY BY F2 20

31 MULTIPLY BY Kg 20

32 ADD T 1

33 ADD K? 1

34 STORE IN Y 1

35 FETCH SINB 1

36 MULTIPLY BY F2 20

37 MULTIPLY BY Kfi 20

38 STORE IN T 1

39 FETCH SINa 1

40 MULTIPLY BY F 20

41 MULTIPLY BY K5 20

42 ADD T 1

43 ADD K^ 1

44 STORE IN X 1

TABLE A-l. COORDINATE TRANSFORMATION PROGRAM.

70

1. Load XL •* R 1

2. Load Y •*• R2
radar report values

3. Load starting address of track table •* R„

4. Load N -*• R, (N • no. of tracks)

• 5. Subtract X-value of track (address In R~) from R-,
leaving answer in accumulator. Increment R~.

6. Output accumulator (AX) to hardwired logic.

7. Subtract Y-value of track (address in R3) from R2,
leaving answer in accumulator. Increment R3.

8. Output accumulator (AY) to hard-wired logic.

9. Decrement R4, skip next instruction if result is zero.

'10. Jump to instruction #5.

11. Continue to remainder of program.

R,, R£, R3, and R4 are internal
microprocessor registers. Instructions
#l-#4 set up a computational loop
consisting of the six instructions
#5-#10. When the program exits to
instruction #11, it has completed the
coarse correlation of one radar report
against N target tracks.

TABLE A-2. SUB-PROGRAM FOR COARSE TRACK-CORRELATION.

71

APPENDIX B

PROGRAMMING CONSIDERATIONS

This Appendix will describe how the microprocessor program for

the "baseline" satellite processor proceeds from one function to another.

In general, the program contains several decision points which compare

the counts in various registers and also the status of the I/O control

lines. Direct Memory Access (DMA) is performed upon demand by the

central computer and is carried out using the central computer clock.

Upon completion of DMA, the satellite processor clock is restored,

and the program resumes from the point of interruption.

Reference Address Registers

The program developed for the satellite processor progresses

according to the amount of data received and the amount of radar data

processed. This is accomplished by regular referencing to various

address registers. These address registers are listed in Table B-l.

To accommodate the overlap in frames (when data from the previous

frame are being returned to the computer while new radar data are

being received), two separate radar data address counters are used,

one for even-numbered frames, and one for odd-numbered frames. "Odd"

and "Even" are arbitrarily determined by a modulo-two counter that

counts frame-start synchronization signals. For example, counter "a"

will count all radar data entered during the first (odd) frame. Then

counter "b" will count all radar data in the next (even) frame.

72

"a" last radar data address entered from
start of odd frame.

"b" last radar data address entered from
start of even frame.

"c" last radar data address which has been
coordinate converted.

"d" last radar data address which has been
correlated.

"e" site data address counter.

"f" current track data address.

"g" last track data address.

"h" last address of data transferred from
satellite to computer.

Table B-l. Register Identification.

73

After all data have been returned to the computer from the first

frame—which occurs within 0.5 seconds of the end of the frame—

counter "a" is cleared and ready to count radar data in the next

odd frame, which will begin in about 5.5 seconds.

Reference address registers (counters) "a" and "b", as

appropriate, are continually incremented throughout their respective

frames as new radar data are received. As these radar data are

coordinate-converted, register "c" is incremented to indicate how

many radar data have been coordinate-converted during each frame.

Similarly, register "d" is incremented once every time one coordinate-

converted radar data point has been correlated with the radar track

data.

Register "e" holds the address corresponding to the site number,

so that the appropriate site data can be addressed during the

coordinate conversion. Register "f" contains the address of the

current radar track data during the correlation subroutine. Register

"g" contains the last radar track address received from the computer.

This is used to terminate each correlation subroutine by comparison

with register "f".

Register "h" contains the address of the last data transferred

to the computer from the satellite processor. When compared with

register "a" or "b", as appropriate, this indicates when all data

have been returned to the computer, and that the register (counter)

74

can be cleared. This condition affects the re-set command if the

new frame synchronization pulse has been received.

The frame-start and radar-data counter select procedure is shown

in Figure B-l. Upon the occurrence of the frame signal, a circuit

will alternately select registers "a" and "b" for counting radar

input data. The appropriate counter will be cleared after "reset",

as depicted in Figure B-2.

Figure B-2 is the program description for performing coordinate

conversions and track correlations. Upon the generation of a re-set

command, counters c, d, e, f, g, and h are initialized. If counter

"a" has been enabled by the counter "a/b" selection circuit, then

counter "b" is cleared; if counter "b" has been selected, then

counter "a" is cleared. Next, if the content of the uncleared

counter, above, exceeds the number of coordinate conversions

executed (indicated by counter "c"), then a coordinate conversion

is executed on the data corresponding to the count (address) in "c",

after which "c" is incremented by one count and the program returns

to point A.

If the coordinate-conversion sequence has caught up with the

input data, and if all track data have been received, and if coordinate-

converted data exist which have not been correlated (c>d), then the

correlation sequence will be entered for the address in counter "d".

When a correlation sequence has been completed, counter "d" is

incremented by one and the track data address counter is initialized,

75

FRAME SYNCHRONIZATION

COUNT
FRAMES

MODULO-2

YES IS NO
i <TRAME NUMBER?

\ ODD?/

1 'i

ENABLE "A" ENABLE"B"
FOR COUNTING FOR COUNTING

INPUT DATA INPUT DATA
DISABLE INPUT DISABLE INPUT

TO"B" TO "A"

> 1 1

- 1

RETURN TO
MAIN PROGRAM

Figure B-l COUNTER "A"/"B" SELECTION

76

RESET

INITIALIZE
COUNTERS
CD.E.F, G,H

YES
S IS
^ENABI

"A"\ NC

1

-ED?/*-"

•

CLEAR "B" CLEAR "A"

KD
YES

DO COORDINATE
CONVERSION OF

RAOAR
DATA ADDRESS

IN "C"
INCREMENT'^"

INCREMENT

YES

IS THE
^-CONTENT OF THE
UNCLEARED COUNTER

C ?

DO CORRELATION
SUBROUTINE AT
ADDRESSES IN

D AND F

NO

INITIALIZE
INCREMENT
TURN ON DATA
READY LINE

Figure B-2 FLOW DIAGRAM FOR COORDINATE CONVERSION AND TRACK CORRELATION

77

to be ready for the next correlation; the program is directed to

point A so that coordinate conversions can be carried out on any

additional radar data that may have been received in the interim.

If no more data were received, then the program will advance to the

correlation sequence for the next address in "d", etc. Whenever

a correlation process has been completed, the "Data Ready" flag to

the computer will be raised. When the satellite processor has

transmitted all data prepared for the computer at any time, the

"Data Ready" flag will be dropped. Thus the computer can transfer

data from the satellite processor at will, whenever the "Data Ready"

flag is raised. This flag will typically be raised and lowered many

times during the last three seconds of each frame if the computer

requests data as they are generated. By delaying its request to just

after the beginning of a frame, all data could be transferred during

a fairly short time period. The satellite will automatically accom-

modate either mode of data transfer.

DMA Operation

All data transfer can be effected by DMA. The previously

mentioned control lines between the satellite processor and the

computer will determine whether the satellite should input or output

data, and, if inputting data, whether they are radar data, track

data, or site data. Also required is a line from the central

computer indicating that track data transmission is finished, and

lines from the satellite processor acknowledging the DMA request

78

and indicating that it has data ready to transfer. Other lines

from the computer will indicate beginning-of-frame, and will provide

the data strobe to the satellite processor for inputting or outputting

data.

Figure B-3 shows the general operation of the DMA. DMA can

occur on any machine cycle of the satellite processor, which is

330 nanoseconds. Therefore, the satellite processor will respond

to a DMA request within, at most, several machine cycles. This is

achieved by simply re-synchronizing the DMA request with the satellite

processor clock, and AND-ing this with the appropriate microprocessor

controls. The proper control lines must, of course, be set by the

time the DMA request is issued. Data will be clocked in or out under

control of the computer. A one-megahertz clock is assumed, although

this is not very critical. As data are entered or outputted, appropriate

counters will be incremented to keep track of the data transfers.

When the DMA request line returns to normal, the satellite processor

will continue from the point at which it was stopped.

79

DMA REQUEST

CONTROL LINES RE-SYNCHRONIZE

GO TO SUBROUTINE
DETERMINED BY
CONTROL LINES

ENTER OR OUTPUT
DATA AND INCREMENT

APPRORIATE ADDRESS
COUNTER

YES

RETURN TO
PROGRAM

Figure B-3 FLOW DIAGRAM FOR DMA PROCEDURE

80

REFERENCES

Clapp, Judith A., "A Review of Software Cost Estimation Methods,"
ESD-TR-271, Electronic Systems Division, AFSC, Hanscom AF Base,
Mass., August 1976.

Boehm, B. W., "The High Cost of Software," Practical Strategies
for Developing Large Software Systems, E. Horowitz, Ed., Addison-
Wesley Publishing Company, Reading, Mass., 1975.

81

